Solving Software Reuse Problems with Theorem Provers
نویسنده
چکیده
For a challenging application, the software component retrieval , we present a powerful solution by combining two systems. The NORA/HAMMR-tool handles all aspects concerning with the logical representation of the application problem, the ILF-tool provides an infrastructure to apply several ATPs like SETHEO, OTTER, SPASS to the emerging deductive problems. For a fruitful practically application, however, an adjustment of application dependent parameter is advisable. The parameter settings can be obtained from a little test suite, if some general tools, already integrated in ILF, for analysation of emerged proof tasks are exploited.
منابع مشابه
Integrating Deduction Techniques in a Software Reuse Application
We investigate the application of automated deduction techniques to retrieve software components based on their formal speci cations. The application pro le has major impacts on the problem solving process and requires an open system architecture in which di erent deductive engines work in combination because the proof problems are too di cult for a single monolithic system. We describe our sys...
متن کاملGeometric Theorem Provers and Algebraic Equations Solvers
The methods of mechanizing mathematics are realized by means of computer software for solving scientific and engineering problems via symbolic and hybrid computation. This chapter provides a collection of geometric theorem provers and algebraic equations solvers that are pieces of mathematical software based mostly on Wu’s method and were developed mainly by members of the extended Wu group. Th...
متن کاملAdaptation of Proofs for Reuse
I Automated theorem provers might be improved if they arc enabled to reuse previously computed proofs. Our approach for reuse is based on generalizing computed proofs by replacing function symbols with function variables. This yields a schematic proof which is instantiated subsequently for obtaining proofs of new, similar conjectures. Our reuse method, which requires no human support, demands t...
متن کاملSecond-Order Matching modulo Evaluation: A Technique for Reusing Proofs
We investigate the improvement of theorem provers by reusing previously computed proofs. A proof of a conjecture is generalized by replacing function symbols with function variables. This yields a schematic proof of a schematic conjecture which is instantiated subsequently for obtaining proofs of new, similar conjectures. Our reuse method requires solving so-called free function variables, i.e....
متن کاملSatisfiability Solving for Program Verification: towards the Efficient Combination of Automated Theorem Provers and Satisfiability Modulo Theory Tools
Many approaches to software verification require to check the satisfiability of first-order formulae. For such techniques, it is of crucial importance to have satisfiability solvers which are both scalable, predictable and flexible. We describe our approach to build solvers satisfying such requirements by combining equational theorem proving, Boolean solving, Arithmetic reasoning, and some tran...
متن کامل